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Abstract. Thermal wall jets are found in a variety of applications in geophysics, mammalian physiology and
electronics, to name but a few. The thermal field of a separating wall jet is studied for a range of values of the
Prandtl number of the fluid. The structure of the jet near the point of separation is described by a free interaction
in which the fundamental problem is to solve the boundary-layer equations in a viscous sublayer close to the wall.
Analytical and numerical solutions are found for the thermal field within the sublayer for the case of a wall at
a fixed temperature. In particular, the wall heat transfer is obtained and effects of upstream influence within the
thermal field are discussed. The large-Prandtl-number limit is considered in detail and it is shown that the main
variation of the thermal field occurs within a region in the immediate neighbourhood of the point of separation.
An upstream-downstream iterative method is used to obtain a numerical solution for this thermal field.
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1. Introduction

The asymptotic structure of a wall jet near a point of separation was considered by Smith and
Duck [1]. They showed that a mutually-reinforcing interaction on a short streamwise length
scale could lead to a rise in pressure and separation of the jet from the wall. Locally the flow
consists of a two-tier structure, a main deck which accommodates an inviscid displacement
of the jet and a viscous sublayer, or lower deck, governed by the boundary-layer equations.
Within the sublayer there is a streamwise pressure gradient proportional to the curvature of
the jet displacement, a relation which forms the key element of the interaction. Smith and
Duck solved the lower-deck problem numerically using an approximation due to Flugge-
Lotz and Reyhner [2] in which the inertial term involving the streamwise velocity gradient
is set to zero in the region of reverse flow. This allows the computation to proceed beyond
separation and leads to results in reasonable agreement with asymptotic predictions of the
separated flow structure at large values of the downstream coordinate. In this structure the
dividing streamline lies within a shear layer which diverges from the wall as the square of the
downstream coordinate and encloses a slowly-moving region of reverse flow.

For a thermal wall jet the temperature field of this separated flow is also of interest. One
application may be found in heat exchange systems, an example of which is the cooling of
electronic circuit boards in computers [3]. Flow separation in a corner region is generally
accompanied by a reduction of heat transfer which can lead to the overheating of electronic
components, with disastrous consequences for the system as a whole. Another application
may be found in mammalian physiology [4], [5, pp. 116–120], [6] in which flow separation in
enclosures is accompanied by loss of heat transfer and may help to maintain body temperature
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in extreme climates. In this paper, consideration is given to the effect of flow separation on the
temperature field near separation and the consequent implications for the local heat transfer.

The basic jet flow is taken to be the free-convection boundary layer generated on a heated
vertical wall by a linear thermal gradient. Such jets arise in thermally-driven cavity flows
and also in geophysical flows involving thermal stratification (see, for example, [7]). Double-
deck structures for these and related flows have been studied in various contexts in [8–15].
A specific application of the present analysis would arise, for example, where separation is
caused by a small protrusion from the wall or a local change in heating. If the protrusion is
comparable in size to the lower deck then the entire separation and reattachment of the jet can
be described within the lower-deck system, as in the analysis of Ghosh Moulic and Yao [13].
Here, the more general situation is considered where the protrusion is sufficiently large to
provoke separation well upstream, where the wall surface is flat. Although the jet flow ahead
of separation is taken to be that associated with a heated wall in a stratified fluid, the analysis
is also applicable to more general jet flows of the type described in [1].

The double-deck structure near separation is outlined in Section 2 and leads to the fun-
damental lower-deck problem for which the velocity field has been computed in [1]. The
corresponding problem for the temperature field is also obtained and numerical solutions are
presented for a range of Prandtl numbers in Section 3. Asymptotic properties of the solution
are also discussed. Eigensolutions associated with upstream influence and non-uniqueness
of the flow downstream of separation are identified and alternative forms of the temperature
field in the separated flow far downstream of separation are discussed. Section 4 considers the
structure of the thermal field for large Prandtl numbers and it is shown that the key problem
is to solve the thermal boundary-layer equation in a region within the lower deck in the
immediate neighbourhood of the separation point. The solution of this problem is described
in Section 5 and the results are discussed in Section 6.

2. Flow structure near separation

A free-convective flow is generated on a heated vertical wall y∗ = 0, −∞ < x∗ < ∞ by
maintaining the wall at a fixed temperature

T ∗ = T ∗
0 +�T ∗(1 + x∗/ l), (1)

where T ∗
0 + �T ∗x∗/ l is the temperature of the ambient fluid, l being the height over which

the wall temperature rises by an amount �T ∗. The governing equations for steady, two-
dimensional Boussinesq flow may be written in the non-dimensional form

∂u

∂x
+ ∂v

∂y
= 0, (2)

σ−1

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ ∇2u+ RT , (3)

σ−1

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ ∇2v, (4)

u
∂T

∂x
+ v

∂T

∂y
= ∇2T , (5)
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where T ∗ = T ∗
0 + �T ∗T , (x∗, y∗) = l(x, y) and the velocity components and pressure are

made non-dimensional with respect to κ/l and ρνκ/l2, respectively, where ρ is the density.
Also σ = ν/κ is the Prandtl number of the fluid, where ν is the kinematic viscosity and κ is the
thermal diffusivity, and R = αg�T ∗l3/κν is the Rayleigh number, where α is the coefficient
of thermal expansion and g is the acceleration due to gravity, which acts in the negative x∗
direction.

From (1), the appropriate boundary conditions at the wall are

T = 1 + x, u = v = 0, y = 0, (6)

while at large distances

T → x, u → 0, y → ∞. (7)

An exact parallel-flow solution of (2–7) exists of the form (see [16], [7])

T = x + T0(Y ), u = R1/2U0(Y ), v = 0, p = 1

2
Rx2, (8)

where Y = R1/4y and

T0 = e−Y/√2 cos(Y/
√

2), U0 = e−Y /√2 sin(Y/
√

2). (9)

In the limit R → ∞ the flow takes the form of a boundary layer of width y = O(R−1/4).
Although the velocity alternates in direction towards the edge of the layer the primary flow is
an upward buoyancy-driven motion adjacent to the wall. It should also be noted that this flow
is independent of the Prandtl number of the fluid.

Now consider the modification to this jet flow caused by a localized disturbance which
may be due to a small protrusion from the wall or a local change in thermal boundary con-
ditions. The implication of [1] is that this can lead to upstream influence within the jet and
the occurrence of separation through a local interaction on a short streamwise length scale of
order R−3/14. The location of this interaction region will depend upon the precise nature of
the disturbance which, it is assumed here, is sufficient to provoke separation at a distance well
upstream (>> R−3/14). Near the point of separation, the flow assumes a two-tier structure
consisting of a main deck of width y = O(R−1/4) and a viscous sublayer, or lower deck, of
width y = O(R−9/28). A local streamwise variable x̃ is defined by

x = x0 + R−3/14x̃, (10)

where x = x0 is the point of separation and the main-deck solution is given by

u = R1/2U0(Y )+ R3/7U1 + · · · , p = 1
2Rx

2
0 + R6/7P1 + · · · ,

v = R11/28V1 + · · · , T = x0 + T0(Y )+ R−1/14T1 + · · · , (11)

where substitution in (2–5) gives

U1 = Ã(x̃)U ′
0, V1 = −Ã′(x̃)U0, T1 = Ã(x̃)T ′

0 (12)

and

P1 = σ−1Ã′′(x̃)
∫ Y

0
U 2

0 (y
′) dY ′ + p̃(x̃). (13)



332 P. G. Daniels and J. T. Ratnanather

Here Ã(x̃) and p̃(x̃) are functions of x̃ to be determined.
In the lower deck

u = R3/7ũ(x̃, ỹ)+ · · · , p = 1
2Rx

2
0 + R6/7p̃(x̃)+ · · · ,

v = R9/28ṽ(x̃, ỹ)+ · · · , T = x0 + 1 + R−1/14T̃ (x̃, ỹ)+ · · · ,
(14)

where y = R−9/28ỹ. Matching with the main-deck solution requires

ũ ∼ U ′
0(0)(ỹ + Ã(x̃)), T̃ ∼ T ′

0(0)(ỹ + Ã(x̃)), ỹ → ∞ (15)

and from (13), application of Bernoulli’s equation at the edge of the jet requires,

p̃(x̃) = −σ−1Ã′′
∫ ∞

0
U 2

0 (Y
′) dY ′. (16)

It is convenient to introduce the scale transformations

x̃ = λ−5/7γ 3/7σ−1/7x, ỹ = λ−4/7γ 1/7σ 2/7y,

ũ = λ3/7γ 1/7σ 2/7u, ṽ = λ4/7γ −1/7σ 5/7v,

p̃ = λ6/7γ 2/7σ−3/7p, T̃ = λ−4/7γ 1/7σ 2/7µT, Ã = λ−4/7γ 1/7σ 2/7A,

(17)

where λ = U ′
0(0) = 1/

√
2, µ = T ′

0(0) = −1/
√

2 and γ = ∫ ∞
0 U 2

0 (Y
′) dY ′ = 1/4

√
2, and

then the lower-deck problem is to solve

∂u

∂x
+ ∂v

∂y
= 0, (18)

u
∂u

∂x
+ v

∂u

∂y
= −dp

dx
+ ∂2u

∂y2
, (19)

u
∂T

∂x
+ v

∂T

∂y
= σ−1 ∂

2T

∂y2
(20)

subject to

u = v = T = 0, y = 0, (21)

u ∼ y + A(x), T ∼ y + A(x), y → ∞, (22)

where

p = −d2A

dx2
. (23)

Upstream, the solution must match with the undisturbed jet flow, requiring that

u → y, T → y,A → 0, p → 0, x → −∞. (24)

One consequence of the rescaling (17) is that the velocity and pressure fields u, v, p are
independent of Prandtl number and are determined independently of the temperature field
in the manner described in [1]. The temperature field T must then be found by solving the
thermal boundary-layer equation (20) for specified values of the Prandtl number.

From (19) and (24), the stream function ψ of the lower-deck flow defined by
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u = ∂ψ

∂y
, v = −∂ψ

∂x
(25)

has the behaviour

ψ ∼ 1
2 (y + A)2 + p +O(exp), y → ∞ (26)

and it is of interest to note from (20) that the temperature field contains terms which decay
algebraically, with

T ∼ y + A+ p(y + A)−1 +O(y−3), y → ∞. (27)

3. Finite Prandtl numbers

Numerical solutions of the lower-deck problem (18–24) were computed for a wide range of
Prandtl numbers using a finite difference marching procedure based on the Keller-box method.
Results were obtained using a FLARE approximation [2] in which the terms u∂u/∂x in the
momentum equation and u∂T /∂x in the temperature equation are neglected wherever u < 0.
The velocity field is independent of Prandtl number and is computed from a suitable initial
station x = x−∞ by applying a small positive increment to the pressure. This is sufficient to
initiate the mutually reinforcing interaction which, as the computation proceeds downstream
leads to separation and growth of the pressure p to a plateau value p0 ≈ 1·22 consistent with
the results of [1]. The origin of coordinates x = 0, y = 0 is chosen to correspond to the point
of separation.

As x → ∞, the dividing streamline which emanates from the point of separation is located
within a shear layer where ξ = (y + A(x))/x1/3 = O(1) and

ψ ∼ x2/3G0(ξ), x → ∞, (28)

with

G′′′
0 + 2

3G0G
′′
0 − 1

3G
′2
0 = 0,

G0 ∼ 1
2ξ

2 + 0, ξ → ∞,

G′
0 → 0, ξ → −∞.

(29)

The boundary conditions follow from matching with the forward flow outside the shear layer,
where ψ is given by (26), and from the fact that there is no significant flow between the
shear layer and the wall. The solution obtained originally in [17] has the property G0(−∞) =
−α0 = −1·257. The corresponding pressure and displacement fields are

p ∼ p0 + p1x
−8/3, A ∼ −1

2
p0x

2, x → ∞, (30)

so that the dividing streamline departs from the wall as the square of the distance downstream
of separation. Between the shear layer and the wall there is an inviscid-dominated region of
weak reverse flow where

ψ ∼ −(−2p1)
1/2y/x4/3, x → ∞ (0 < y/x2 <

1

2
p0). (31)
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Figure 1. Pressure p(x), displacement A(x) and skin friction τ(x) = ∂u/∂y(x, y = 0) for the lower-deck free
interaction as obtained in [1]. The curves giving the location y = s(x) of the dividing streamline ψ = 0 and the
streamwise velocity u = c(x) along the dividing streamline are also shown.

The pressure correction p1 is determined by matching with the shear layer as p1 = −2α2
0/p

2
0

and also drives the upstream flow in a wall layer of thickness y = O(x7/6) where ψ =
O(x−1/6). Details are given in [1].

The computations of the velocity and pressure fields shown in Figure 1 were carried out
with step lengths �x = 0·1, �y = 0·1, an outer boundary at y = y∞ = 140 and a tolerance
of 10−8 in the Newton iteration used to solve the discretized system of nonlinear equations
at each downstream step; computations were initiated at x = −11·9 and terminated at x =
25·9. Checks on accuracy were made with other values of these parameters. Results for the
temperature field are shown in Figure 2 where the wall heat transfer is displayed for Prandtl
numbers varying from 0·01 to 10. The heat transfer falls dramatically ahead of and beyond
separation, with the region of variation beyond separation becoming smaller as the Prandtl
number increases and subject to a numerical instability which is discussed in detail below.

Temperature profiles for Prandtl numbers of 0·1 and 1 across the lower deck at various
values of x are shown in Figure 3. Within the shear layer which forms as x → ∞, it is
envisaged that

T ∼ x1/3H0(ξ), x → ∞, (32)

where H0 satisfies the equation

H ′′
0 + σ ( 2

3G0H
′
0 − 1

3G
′
0H0) = 0, (33)

together with the boundary condition

H ′
0 → 1, ξ → ∞, (34)

in order to match the outer form (27). It is readily established by one integration of (33) that
the solution which is exponentially small as ξ → ∞ cannot pass through a zero as ξ decreases,
or reach zero as ξ → −∞, so that the two fundamental solutions for H0 may be defined by
the properties H ′

01
(∞) = 1, H01(−∞) = 0 and H02(∞) = 0, H02(−∞) = 1. The general

solution for H0 which satisfies (34) can then be written in the form

H0 = H01 + kH02, (35)
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Figure 2. Wall heat transfer with Prandtl numbers 0·01, 0·05, 0·1, 0·72, 1, 2, 3, 4, 5·65, 10 increasing from right
to left towards the dashed line which is the large-Prandtl-number limit: ∂T/∂y(x, y = 0) ∼ {τ(x)}1/2 (see
Equation (48) below) where τ(x) is obtained from the solution in Figure 1.

where k is an arbitrary constant. The solutions H01 and H02 were computed for unit Prandtl
number over the domain −10 ≤ ξ ≤ 10 and are shown, along with G0, in Figure 4. It is
interesting to note that for unit Prandtl number H01 = G′

0. If the constant k is non-zero it
is readily shown that the inviscid reverse flow region between the shear layer and the wall
is then convection-dominated, with T ∼ k(−ψ/α0)

1/2 as x → ∞. Such solutions may be
physically realistic and indeed there may be a much wider class of solutions corresponding to
the arbitrary specification of T on streamlines entering the flow field from x = ∞. However,
in Sections 4 and 5 below, attention is focused on the possibility that k = 0 in which case
as x → ∞ there is no significant variation in T between the shear layer and the wall. This
situation can be compared to the results obtained in [13] for locally separated flows produced
by small protrusions on the lower-deck scale. There it was observed that the separated region
acts like an insulating layer in which the heat transfer rates are reduced, the heat transfer across
the almost stagnant region being mainly by conduction.

In the FLARE computations reported here, the numerical solution for T develops an os-
cillatory instability if x is allowed to increase too far beyond separation (see Figure 2). This
is presumably connected with the neglect of upstream influence in the numerical scheme.
Results for finite Prandtl numbers using an improved scheme such as that developed for
the momentum equations by Saintlos et al. [18], [19] still need to be found, although the
downstream structure of the solution, together with the possibility of a wide range of solutions
corresponding to different downstream boundary conditions for T makes this a difficult task in
general: see Aziz et al. [20] for a review of numerical schemes to solve these types of forward-
backward parabolic equations. An improved scheme for the simpler problem associated with
the large Prandtl number limit is described in Section 5 below, based on a method developed
by Ratnanather and Daniels [21] for dealing with strongly-reversed thermal boundary-layer
flows.

The manner in which upstream influence affects the temperature field beyond separation
can be analysed by studying the solution near x = 0+. Here the stream function has the form

ψ = 1
6ay

3 − bxy2 + · · · , (36)
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Figure 3. Temperature profiles at x = 0·1, 1·1, 2·1, 3·1, 4·1, 5·1, 6·1, 8·1, 10·1, 12·1 (left to right) in the lower
deck for (a) σ = 0·1 and (b) σ = 1.

where a = dp/dx(0) > 0 and b = − 1
2∂

2u/∂x∂y(0, 0) > 0. Thus the local temperature field
satisfies

( 1
2ay

2 − 2bxy)
∂T

∂x
+ by2 ∂T

∂y
= σ−1 ∂

2T

∂y2
. (37)

Although the dominant terms in the expansion of T about the origin are regular, the most
important aspect of the thermal field just beyond separation is a non-uniqueness associated
with the existence of exponentially growing eigensolutions. Such solutions of (37) take the
form

T ∼
(
xb4/3σ 1/3

a

)n
exp

{
− a3β

b4σx3

} (
F0(η)+ x3b4σ

a3
F1(η)+ · · ·

)
, x → 0+, (38)

where η = ay/bx and β is an eigenvalue to be determined. Substitution in (37) gives at
leading order
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Figure 4. The fundamental solutions H01 and H02 of Equation (33) for Prandtl number σ = 1. The function G0
is also shown.

F ′′
0 − 3β( 1

2η
2 − 2η)F0 = 0 (39)

and at first order

F ′′
1 − 3β( 1

2η
2 − 2η)F1 = ( 1

2η
2 − 2η)nF0 + (3η2 − 1

2η
3)F ′

0. (40)

Solutions of (39) which decay exponentially as η → ∞ are of the form

F0 = c0U(−(6β)1/2, (6β)1/4(η − 2)), (41)

where U is the parabolic cylinder function (see, for example, [22, p. 686]). At the wall (η = 0)
it is required that F0 = 0, which fixes β as a solution of

U(−(6β)1/2, − 2(6β)1/4) = 0. (42)

This determines an infinite sequence of eigenvalues β = βm,m = 0, 1, 2, . . . , with

β1/2
m = (m− 1

3)/
√

6 + o(1), m → ∞. (43)

The value of n in (38) is fixed by a consistency condition associated with the requirement
that (40) has a solution which satisfies F1(0) = 0 and F1 → 0 as η → ∞. Multiplication of
(39) by F1 and (40) by F0, subtraction and integration yields the result

(n+ 3
2 )(3β)

−1
∫ ∞

0
F ′2

0 dη = 0, (44)

from which it follows that n = − 3
2 . This analysis is based on (37) and therefore neglects

higher-order corrections in the Taylor expansion (36) of ψ at the origin. Inclusion of such
terms would lead to a more complicated expansion in (38) and quite possibly a different
value of n, but the leading-order results for β and F0 would remain unaffected. In fact the
correction term involving F1 remains valid formally in the large Prandtl number limit where
(a scaled form of) Equation (37) governs the flow in a separation zone surrounding the origin
(see Section 4 below). The solution (38) with n = − 3

2 then applies just downstream of the
separation point, as measured relative to the reduced scale of the separation zone.
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The family of eigensolutions (38) allows exponentially small thermal perturbations to grow
downstream of separation and prevents a reliable numerical solution from being obtained by
a forward marching technique. These eigenfunctions must instead be determined from infor-
mation supplied downstream of separation and are the means by which upstream influence
occurs within the reverse flow region. The eigenfunctions (41) are centred around the line
η = 2 which lies within the reverse flow zone 0 < η < 4 just downstream of separation.
They decay outwards across the line of zero streamwise velocity η = 4 and the dividing
streamline η = 6, thus also influencing the thermal field in the forward-flow region where
x > 0. The length scale x over which the eigenfunctions grow is proportional to σ−1/3 so that
in a numerical computation based on forward marching, breakdown can be expected to occur
rapidly at large Prandtl numbers. This is observed in the FLARE computations.

It is of interest to note that upstream influence within the velocity and pressure fields can
be expected to occur through eigenfunctions proportional to

exp

{
− a3β̃

b4x3

}
, x → 0+, (45)

with the eigenvalues β̃ independent of Prandtl number. As the main purpose of the present
work is to discuss the thermal field, the detailed structure of these eigensolutions will not be
given here.

4. Large-Prandtl-number limit

In the limit of large Prandtl number it is clear from (20) that throughout most of the lower deck
the thermal boundary layer equation is dominated by the convective terms on the left-hand
side, implying that the temperature T is functionally dependent only on the stream function
ψ . Upstream (as x → −∞), ψ → 1

2y
2 and T → y so that in the region x < 0 and outside

the shear layer in x > 0,

T ∼ (2ψ)1/2, σ → ∞. (46)

In general a thin thermal layer (where the right-hand side of (20) is significant) might be
expected to occur along the wall x < 0. However, the solution for ψ has the behaviour ψ ∼
1
2y

2τ(x) as y → 0, where τ(x) is the skin friction shown in Figure 1. Thus the solution for T
given by ( 46) has the linear form

T ∼ {τ(x)}1/2 y, y → 0 (x < 0). (47)

Since this solution satisfies both the wall condition T = 0 on y = 0 and the full Equation (20),
no adjustment to the outer solution (46) is required. The wall heat transfer in the large-Prandtl-
number limit is therefore given by

∂T

∂y
(x, y = 0) ∼ {τ(x)}1/2, x < 0, (48)

a result which agrees with the numerical computations (see Figure 2). Note also that the outer
solution (46) is consistent with the asymptotic behaviours (26) and (27) as y → ∞. Result
(48) expresses a simple relationship between skin friction and heat transfer; the corresponding
relationship for a classical boundary layer at finite Prandtl numbers has been discussed by
Lighthill [23].
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Figure 5. Schematic diagram of the lower-deck solution in the large-Prandtl-number limit.

Near the point of separation the stream function is given by (36) and the skin friction τ(x)
vanishes linearly, with τ ∼ −2bx, x → 0 where b > 0. Thus the wall heat transfer given by
(48) has a square-root singularity

∂T

∂y
(x, y = 0) ∼ (2b)1/2(−x)1/2, x → 0−, (49)

which must be smoothed out within a small region centred on the point of separation. In this
separation zone (see Figure 5) both the convective and conductive terms must balance in (20)
and on the assumption that

T ∼ a1/2b−1/2σ−1/2θ(X, Y ), σ → ∞, (50)
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where x = ab−4/3σ−1/3X, y = b−1/3σ−1/3Y , the function θ is found to satisfy the reduced
system

( 1
2Y

2 − 2XY)
∂θ

∂X
+ Y 2 ∂θ

∂Y
= ∂2θ

∂Y 2
, (51)

θ ∼ Y (−2X)1/2, X → −∞, (52)

θ = 0, Y = 0, (53)

θ ∼ ( 1
3Y

3 − 2XY 2)1/2, Y → ∞. (54)

Locally the stream function ψ ∼ ab−1σ−13(X, Y ) where 3 = 1
6Y

3 − XY 2 and so in the
scaled variables X,Y the dividing streamline 3 = 0 is the straight line Y = 6X; similarly, the
path on which u = 0 is given locally by the straight line Y = 4X, with reverse flow occuring
in the segment Y < 4X for X > 0. This allows for upstream influence in Equation (51) and
so the system must be closed by a suitable boundary condition on θ as X → ∞. Near the
dividing streamline the solution has the form

θ ∼ X3/4H(ζ ), X → ∞, (55)

where ζ = (Y − 6X)X1/2 and H satisfies the equation

H ′′ + 9ζH ′ − 9
2H = 0 (56)

and, from (54), the boundary condition

H ∼ 2
√

3ζ 1/2, ζ → ∞. (57)

If the solution between the dividing streamline and the wall is to contain only weak thermal
gradients, the system for H is completed by the requirement that in the asymptotic form
H ∼ K(−ζ )1/2 as ζ → −∞, the constant K is zero, in which case

H → 0, ζ → −∞. (58)

This is equivalent to the choice k = 0 in (35) and excludes the complementary solution for H
(equivalent to H02 in (35)) given by exp{− 9

4ζ
2}U(1, 3ζ ). Thus

H = √
2π exp{− 9

4ζ
2}V (1, 3ζ ), (59)

where V is the second parabolic cylinder function (see [22, p. 686]) and the solution for θ
below the dividing streamline is then exponentially small as X → ∞. A numerical solution
of the system (51–54) together with the downstream behaviour corresponding to

K = 0 (60)

is presented in Section 5.
The analysis of the leading-order large-Prandtl-number structure is completed by consider-

ing how the solution near the dividing streamline extends into the outer region. The position of
the dividing streamline y = s(x) is determined by the velocity field of [1] and from the earlier
discussion has the properties s ∼ 6a−1bx, x → 0+ and s ∼ 1

2p0x
2, x → ∞. Near this line,

ψ can be approximated by ψ ∼ c(x)(y− s(x)) where c(x) is again a known function and has
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the properties c ∼ 6a−1b2x2, x → 0+ and c ∼ c0x
1/3, x → ∞, with c0 = G′

0(ξ0) = 0·934,
where ξ0 = 0·620 is the zero of G0. The functions s(x) and c(x) are shown in Figure 1.

The thermal adjustment near the dividing streamline occurs in a narrow transition region
(see Figure 5) where the conduction term on the right-hand side of (20) balances the convec-
tion terms, requiring a scale in y of order σ−1/2. A local coordinate ŷ is defined by writing
y = s(x) + σ−1/2ŷ and then the solution for T is given by

T ∼ σ−1/4T̂ (x, ŷ), σ → ∞, (61)

where T̂ satisfies the equation

c(x)
∂T̂

∂x
− c′(x)ŷ

∂T̂

∂ŷ
= ∂2T̂

∂ŷ2
. (62)

This must be solved in x > 0 subject to the conditions

T̂ ∼ (2c(x)ŷ)1/2, ŷ → ∞, (63)

T̂ → 0, ŷ → −∞ (64)

and matching with the behaviour (55) as x → 0. A coordinate transformation (x, ŷ) → (x̂, ψ̂)

where x̂ and ψ̂ are defined by

x̂ =
∫ x

0
c(x) dx, ψ̂ = c(x)ŷ, (65)

is now used to reduce (62–64) to the form

∂T̂

∂x̂
= ∂2T̂

∂ψ̂2
; T̂ ∼ (2ψ̂)1/2, ψ̂ → ∞; T̂ → 0, ψ̂ → −∞ (66)

and the relevant solution is

T̂ = x̂1/4Ĥ (ζ̂ ), (67)

where ζ̂ = ψ̂/x̂1/2 and

Ĥ = 21/4π1/2V (1, ζ̂ /
√

2) exp{−ζ̂ 2/8}. (68)

This solution is consistent with exponentially small values of T between the dividing stream-
line and the wall. The thickness y of the transition layer grows like σ−1/2x−1/2 as x → 0+,
consistent with the form (55) emanating from the separation zone, and it also grows (like
σ−1/2x1/3) as x → ∞ where it lies within the shear layer discussed in Section 3.

5. Solution of the separation-zone problem

The numerical solution of (51–54) together with (60) is based on a marching scheme using
a modification of the Keller-box method applied recently to a model thermal boundary-layer
separation problem [21]. The governing equations are set up as a system of first order partial
differential equations:

∂θ

∂Y
= 7, (69)
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Figure 6. Wall heat transfer in the separation zone obtained from solution of Equations (51–54) together with
(60).

Figure 7. Temperature profiles at X = −2,−1 · 5,−1, −0·5, 0, 0·2, 0·4, 0·6, 0·8, 1, 1·5, 2, 2·5, 3 (left to right) in
the separation zone obtained from solutions of (51–54) together with (60).

∂7

∂Y
= ∂3

∂Y

∂θ

∂X
− ∂3

∂X
7, (70)

where 3 = 1
6Y

3 −XY 2. The computational domain is [−X∞, X∞] × [0, Y∞] where X∞ = 3
and Y∞ = 24 to accommodate the forward flow above the reverse flow region in X > 0.
The domain is discretized with step lengths of �X and �Y so that Xi = Xi−1 + �X and
Yj = Yj−1 + �Y . At each Xi , the first-order equations are discretized by use of the box
scheme.

With the reverse flow region Y < 4X where ∂3/∂Y < 0 denoted by :, the modified
marching scheme is as follows. On the first forward sweep, solutions for θ,7 are obtained
with (∂3/∂Y )∂θ/∂X = 0 in : as in FLARE; the values of θ and 7 are updated to zero
at X = X∞ on :. On the first and subsequent backward sweeps, marching begins at X =
X∞ − �X with θ,7 known at X = X∞; if the node is outside :, the discrete equation



Separating thermal wall jet 343

for 7 is replaced by retaining the value of 7 obtained from the previous forward sweep. On
the second and subsequent forward sweeps, if the node is inside :, the discrete equation for
7 is replaced by retaining the value of 7 obtained from the previous backward sweep; the
values of θ,7 are again set to zero at X = X∞ on :, as in the first forward sweep. Since the
solution over X < 0 is unchanged, forward sweeps are initiated at X = 0 on the second and
subsequent occasions whilst the backward sweeps are terminated at the same location. Step
lengths of�X = 0·00625 and �Y = 0·0025 were found to overcome streamwise oscillations
attributed to the instability of the box-scheme discretization of convection-diffusion problems
[24]. The global L1 norm for the residuals averaged over the whole computational domain
between successive forward-backward sweeps fell below 0·01 in just 20 sweeps with an under-
relaxation factor of 0·7 and final results for the wall heat transfer 7(Y = 0) and temperature
profiles are shown in Figures 6 and 7 respectively.

6. Discussion

The present paper has studied the temperature field of a separating wall jet, with particular
emphasis on the large-Prandtl-number limit. New solutions have been found for fixed wall
temperature which indicate a sudden reduction in wall heat transfer as the flow separates from
the wall. For general values of the Prandtl number σ , the streamwise length scale x over which
this reduction occurs is of order R−3/14 and from the numerical results shown in Figure 2, this
scale decreases as σ increases. For small σ , most of the reduction in heat transfer occurs
downstream of the separation point, whereas for large σ it occurs almost entirely upstream.
From the scale transformations (17) it follows that for the stratified wall jet considered here,
this upstream length scale is of order R−3/14σ−1/7 as σ → ∞ although the key adjustment
in the temperature field occurs within the separation zone shown in Figure 5, which has a
shorter streamwise length scale R−3/14σ−10/21 and is centred on the point of separation. The
detailed structure of the temperature field has been determined in the separation zone, taking
full account of the upstream influence in the solution resulting from flow reversal in the jet.
This upstream influence is characterized by a non-uniqueness of the solution downstream of
the separation point, the form of which is found analytically in Section 3.

The results reported here correspond to solutions for which the temperature of the fluid
in the region of weak reverse flow downstream of separation approaches that of the wall,
with the adjustment to the ambient temperature being made outside the dividing streamline. It
seems likely that a wider class of temperature fields is possible in which the region between
the dividing streamline and the wall is convection-dominated corresponding, for example, to
non-zero values of k in (35) or, for the large-Prandtl-number limit, non-zero values of K in
(60). Initial indications are that such solutions do exist in the latter case, just as they do in a
related thermal boundary-layer problem [21] and correspond here to setting θ = K(−3/6)1/2
(instead of zero) in the reverse flow region at the downstream location X = X∞ in the algo-
rithm described in Section 5. The physical significance of such solutions, however, depends
upon an understanding of how the double-deck structure fits into a wider picture of the flow
for a particular geometry and this is a much more difficult proposition.
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